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In 1999 [J. Comput. Phys. 153, 596], Hui and his co-workers proposed a unified
coordinate system for computing compressible flows with discontinuous solutions. In
their coordinate system, there is a free parameter h such that the traditional Eulerian
approach and Lagrangian approach correspond to the particular cases h = 0 and
h = 1, respectively. Hence this approach unifies the two classical methods for des-
cribing fluid flows. In this note we consider a one-dimensional problem and we
show that there is a parameter range within 0 < h < 1, such that the coordinate trans-
formation is not invertible across a shock wave. In addition, there is a value of h
such that the transformation becomes singular. Hence the parameter h should be
restricted to a value close to 0 or 1 near a shock wave. This restriction does not occur
away from a shock wave. This note clearly shows that the unified coordinate system
of Hui et al. involves interesting properties that should be considered in practical
applications. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In classic fluid mechanics, there are two traditional approaches to describing fluid flows:
the Eulerian approach and the Lagrangian approach. In the Eulerian approach, one considers
what happens at every fixed point in space as a function of time. The velocities and the
other properties of fluid elements are considered to be functions of time and fixed-space
coordinates. In the Lagrangian approach, one looks for the dynamic history of each selected
fluid element. The positions of fluid particles and the other properties are considered to be
functions of the time and their initial positions. Both approaches have some advantages in
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classic fluid mechanics [16]. They are regarded as equivalent to each other [19] except that
the Lagrangian approach gives more information by telling each fluid particle’s history.

The greatest disadvantage of the Eulerian approach is that fluid particles move across
cell interfaces. It is this convective flux that causes excessive numerical diffusion in the
numerical solutions. As a result, discontinuities such as shock waves and slip lines (contact
discontinuities) are smeared out, although there are exceptions, such as the standard Roe
scheme for a steady shock.

The Lagrangian approach, which is used by a wide community [1, 5, 9], needs the use of
a moving frame and uses fluid particles as computational cells. Consequently, there is no
convective flux across cell boundaries and the numerical diffusion can be minimized.

Recently, Hui and his co-workers proposed a unified coordinate system which unifies
both approaches [4, 6–8]. This unified approach combines the advantages of the Eulerian
approach and the Lagrangian approach. It involves a free parameter h which is allowed
to vary with position (see [4, 6–8] for more details for the choice of h). The traditional
Eulerian and Lagrangian approaches correspond to the particular cases h = 0 and h = 1,
respectively. An equation for h can also be derived to ensure some quality requirement of
the grid system. Note that the unified coordinate approach is different from other kinds of
unified Lagrangian–Eulerian approaches, such as the arbitrary Lagrangian–Eulerian (ALE)
approach [2, 13, 14].

In this short note we consider whether h can be allowed to vary arbitrarily within the range
0 < h < 1. This note is restricted to the one-dimensional Euler equations in gas dynamics
and to the case of continuous h. The Euler equations, in the original coordinate system
(x , t), can be written in the conservative form

wt + f (w)x = 0, (1)

with

w = (� , �u, � E)t ,

f (w) =
(

�u, �u2 + p, �u

(
E + p

�

))t

.

Here � is the density, u is the velocity of the fluid particle, E is the total energy,

p = (� − 1)

(
� E − 1

2
�u2

)

is the pressure, and � is the ratio between the specific heats at constant pressure and constant
volume. The sound speed is defined by a = √

� p/� .
Let wl and wr be the left and right states of the discontinuity. We use 〈w〉 = wr − wl to

denote the jump across the discontinuity. Then in the physical space the Rankine–Hugoniot
relation [3, 15]

〈 f (w)〉 = s ′〈w〉, x = xs, (2)

where xs denotes the position of the discontinuity and s ′ = dxs
dt is the speed of the shock

wave, is satisfied for both shock wave and contact discontinuity.
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We only consider the case that the shock wave has a positive speed, i.e., s ′ > 0. The case
with s ′ < 0 can be symmetrically considered.

There are two cases: the left-going shock wave and the right-going shock wave. Here left
and right mean relative to the fluid upstream of the shock.

For a left-going shock wave, the fluid crosses the shock from the left, i.e., ul > s ′; in
which case the entropy condition, which states that the relative flow upstream (on the left of
the shock) must be supersonic, requires ul − s ′ > al . Hence, a physically relevant left-going
shock wave satisfies the condition

s ′ < ul − al . (3)

For a right-going shock wave, the fluid crosses the shock from the right so that ul − s ′ < 0
(the fluid velocity relative to the shock is negative on both sides). In this case, the entropy
condition requires the relative flow downstream (on the left-hand side) of the shock to be
subsonic, i.e., ul − s ′ > −al . Hence, a physically relevant right-going shock wave satisfies
the condition

ul < s ′ < ul + al . (4)

Let M = ul/al be the Mach number. Using the classic Rankine–Hugoniot relation
[3, 10–12, 15, 17], we have

ur

ul
= 1

M

s ′

al
+ (� − 1)

(
M − s ′

al

)2 + 2

(� + 1)
(

M − s ′
al

)
M

, (5)

pr

pl
= 2�

(
M − s ′

al

)2

� + 1
− � − 1

� + 1
. (6)

For a given pl , the pressure pr must be positive. This requires, by (6), the following
inequality to be satisfied:

s ′ < ul − al

√
� − 1

2�
or s ′ > ul + al

√
� − 1

2�
. (7)

Note that for � > 1, 0 <
√

�−1
2�

< 1. Combining (3), (4), and (7), we note that to ensure
the entropy condition and positivity condition, the speed of a shock wave with s ′ > 0 should
satisfy the condition

0 < s < M − 1 or M +
√

� − 1

2�
< s < M + 1, (8)

where

s = s ′

al
= M

ul
s ′ (9)

is the relative shock speed.
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2. UNIFIED COORDINATE SYSTEM AND INVERTIBILITY CONDITION

The unified coordinate system (�, � ) invented by Hui and his co-workers [4] is related to
the original coordinate system (x, t) by

dt = d�, (10)

dx = Ad� + Bd�, (11)

where B is related to the fluid velocity u by

B = hu (12)

and A must satisfy the Cauchy–Riemann relation (called geometrical conservation laws)

∂ A

∂�
= ∂ B

∂�
. (13)

Note that dt = d� does not necessarily mean t = � . Moreover, the use of the notation �

avoids possible loss of terms while performing derivation.
Following Hui et al. [4], the frame derivative is defined by

DB�

Dt
= �t + B�x .

It can be shown that DB�
Dt = 0 so that B is the speed of the moving frame.

Still using (10) and (11), we have

A = x� = �−1
x .

Hence A is the Jacobian of the coordinate transformation.

Invertibility condition. For the transformation to be invertible, we must impose

A > 0. (14)

Following Viviand [18], system (1) in the transformed frame can be written in the con-
servative form (called physical conservation law by Hui et al. [4])

W� + F(W )� = 0, (15)

with

W = Aw,

F(W ) = A(�tw + �x f ).

The physical conservation law (15) and the geometric conservation law (13) are solved
simultaneously in the unified coordinate system approach.

Across a shock wave, not only the physical conservation law but also the geometric con-
servation law must satisfy the Rankine–Hugoniot relation. Now consider the jump relation
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in the transformed space (�, � ). If (15) is self-contained, then the Rankine–Hugoniot jump
relation is

〈F(W )〉 = �〈W 〉, � = �s, (16)

where �s is the position of the discontinuity and � is the speed of discontinuity in the trans-
formed space.

Introducing W = Jw and F(W ) = J (�tw + �x f ) into (16), and noting that J = A and
�t = − B

A , we obtain from (16)

〈−Bw + f 〉 = �〈Aw〉. (17)

PROPOSITION 1. If A satisfies the Rankine–Hugoniot relation

〈−B〉 = �〈A〉, (18)

then the jump relation in the physical space (2) and the jump relation in the transformed
space (17) are equivalent, with � given by

� = s ′ − Bl

Al
. (19)

Proof. The left-hand side of (17) can be expanded as

〈−Bw + f 〉 = −〈Bw〉 + 〈 f 〉 = −〈B〉wr − 〈w〉Bl + 〈 f 〉 (20)

and the right-hand side of (17) can be expanded as

�〈Aw〉 = �〈A〉wr + �〈w〉Al . (21)

Inserting (20) and (21) into (17) yields

−〈B〉wr − 〈w〉Bl + 〈 f 〉 = �〈A〉wr + �〈w〉Al ,

and thus the following relation holds:

〈 f 〉 = (Bl + � Al)〈w〉 + (�〈A〉 + 〈B〉)wr .

Applying relation (19) to the above relation leads to

〈 f 〉 = s ′〈w〉 + (�〈A〉 + 〈B〉)wr ,

which, with A subjected to the constraint (18), yields exactly the jump relation (2).
From (18), we have, for continuous h,

Ar = Al

(
1 + Bl − Br

s ′ − Bl

)
= Al

(
1 + h(ul − ur )

s ′ − hul

)
= Al

(
1 + h

(
1 − ur

ul

)
s
M − h

)
. (22)
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When h is discontinuous, the second equality in the above equation should be modified
as

Ar = Al

(
1 + hlul − hr ur

s ′ − hlul

)

and the subsequent analysis could be continued by adding a jump �h to hl = h so that
hr = hl + �h. If we note the relative jump by r = �h/h, then the third equality in (22)
can be replaced by

Ar = Al

(
1 + h

(
1 − (1 + r ) ur

ul

)
s
M − h

)
. (23)

One can repeat the subsequent analysis to consider the role of r . This is, however, beyond
the objective of the current note, which is restricted to continuous h. In fact h may be
required to vary discontinuously only in high dimensions, as will be noted more clearly at
the end of this note.

Using the jump relation (5) for velocity, expression (22) can be rewritten as

Ar = Al

[
1 + h

(
M − s − (� − 1)(M − s)2 + 2

(� + 1)(M − s)

s − hM

)]
. (24)

In consequence, the invertibility condition (14) can be expressed as

S(h) = 1 + h

(
M − s − (� − 1)(M − s)2 + 2

(� + 1)(M − s)

s − hM

)
> 0. (25)

3. CONDITION OF NONINVERTIBILITY

From (25), we have

S(0) = 1 (26)

and

S(1) = (� − 1)(M − s)2 + 2

(� + 1)(M − s)2
> 0. (27)

Hence the invertibility condition (14) is satisfied for the classic Eulerian approach (h = 0)
and the classic Lagrangian approach (h = 1).

Now let us see if there are values of h ∈ (0, 1) such that S(h) < 0. Since S(0) > 0 and
S(1) > 0, S(h) can be negative if there is a point h = ha at which S(h) = 0 and d S(h)

dh �= 0.
Setting S(ha) = 0 yields

ha = (� + 1)(M − s)s

((� − 1)M + 2s)(M − s) + 2
(28)
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and

d S(ha)

dh
= 2(M − 1 − s)(M + 1 − s)

(� + 1)(M − s)
(−s + s (� + 1)(M − s)

((� − 1)M + 2s)(M − s) + 2 M
)2 . (29)

Obviously, the inequality dS(ha )
dh �= 0 holds if

s �= M − 1 and s �= M + 1. (30)

Now we want to look for the condition such that ha defined by (28) satisfies 0 < ha < 1.
Obviously, ha > 0 only if

0 < s < M. (31)

To look for the condition such that ha < 1, we rewrite (28) as

ha = 1
(� − 1) M

s + 2
(� + 1) + 2

(� + 1)(M − s)s

.

Under (31), we have

(� − 1) M
s + 2

(� + 1)
> 1,

so that

ha <
1

1 + 2
(� + 1)(M − s)s

< 1.

Conditions (30) and (31) can be combined as

0 < s < M, s �= M − 1 (32)

However, we must only consider a physically relevant shock wave, for which constraint (8)
must be fulfilled. Combining (32) and (8), we obtain

PROPOSITION 2. If the speed of a physically relevant shock wave, with s > 0, satisfies
the constraint

0 < s < M − 1, (33)

then the function S(h) becomes negative around h = ha , where ha , given by (28), satisfies
the condition

0 < ha < 1.

In other words, there is a parameter range h ∈ (0, 1) such that the transformation (10)–(11)
is not invertible.
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FIG. 1. Function S(h) for s = 0.5 and M = 3.

4. MORE DETAILS AND DISCUSSIONS

The function S(h) is singular for some h satisfying 0 < h < 1. To see that, let us put
S(hb)−1 = 0. Then we obtain

hb = s

M
. (34)

Obviously, 0 < hb < 1 for s satisfying (32).
A further analysis shows that for 0 < s < M − 1, we have ha > hb; that is, the singularity

point is at the left of the zero point.
Let us consider s = 0.5 and M = 3 so that condition (33) is satisfied (the function S = S(h)

is displayed in Fig. 1). Hence for h ∈ (0.167, 0.4), S(h) < 0.
Now consider s = 1.5 and M = 1.2 so that condition (33) is not satisfied (the function

S = S(h) is displayed in Fig. 2). Here we always have S(h) > 0.
In summary, we have the following conclusions.

1. If the flow is such that condition (32) is not satisfied, then the unified coordinate
system works well. Recall that s is the shock speed normalized by the sound speed at the
left-hand side of the shock wave.

2. If condition (32) is satisfied, then necessarily we have a range of h lying inside
(0, 1) such that S(h) < 0. According to (26) and (27), S(h) has finite and positive values at
h = 0 and h = 1. This means that there exists two positive values �1 and �2 such that the
transformation is invertible for h ∈ (0,�1) and h ∈ (1 − �2, 1). Also, �1 and �2 are large

FIG. 2. Function S(h) for s = 1.5 and M = 1.2.
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enough so that the unified coordinate system works well for a large range of h around
0 or 1.

3. If one insists on letting the value h vary in (0, 1), one just needs to ensure that h is
close to 0 or 1 across a shock wave. For smooth-flow regions and for contact discontinuities,
the above phenomena does not occur, so there is no restriction on h. However, near a shock
wave, one can simply use a value h close to 0 or 1, since there are good numerical methods
for both the Eulerian approach and the Lagrangian approach to give sharp resolution of
shock waves.

5. FURTHER PROBLEMS

There are two further questions which arise from high-dimensional problems.
The first is whether the current results hold exactly true for high dimensions, though

intuition might tell us that it holds true since 1-D is a particular case of 2-D or 3-D. The 2-D or
3-D case is more complex while we note that Ref. [4] did not report any difficulty in the
2-D computation. A possible reason would be that in the direction normal to the shock,
it happened that h did not lie in the range leading to negative S(h). This issue will be
considered when we consider high-dimensional problems in the future.

The second question is related to the continuity of h. In [4] h is controlled locally by
preserving the grid angle in 2-D and the resulting equation for h is solution dependent.
Since the solution is discontinuous across a shock wave, h might be discontinuous, too. If
h is discontinuous, then the second equality (22) does not hold true and the conclusions
could be slightly different. It is doutful that the equation for h can be solved analytically.
Even with tremendous effort it is unlikely that one can arrive at conclusions as fundamental
as for the currect 1-D study.
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